Non-parametric regression using splines, with applications

Lecture dedicated to the memory of Milcho Tsvetkov

Ognyan Kounchev and Georgi Simeonov

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

$$
\text { 13th BSAC, Velingrad, October 3-6, } 2022
$$

ACKNOWLEDGEMENTS

Sponsored by grants with Bulgarian NSF (KP-06- N32-8, KP-06-N52-1, and KP-06N42-2), and by the Alexander von Humboldt Foundation. Based on joint research with H. Render, Ts. Tsachev.

Applications of splines to Astronomy and Astrophysics

- Akerlof, C. et al., Application of Cubic Splines to the Spectral Analysis of Unequally Spaced Data, 1994.

Applications of splines to Astronomy and Astrophysics

- Akerlof, C. et al., Application of Cubic Splines to the Spectral Analysis of Unequally Spaced Data, 1994.
- Kundiukov, S. G. ; Nazarenko, N. B., Application of smoothing splines in processing the amplitude-time characteristics of radio meteors, 1988.

Applications of splines to Astronomy and Astrophysics

- Akerlof, C. et al., Application of Cubic Splines to the Spectral Analysis of Unequally Spaced Data, 1994.
- Kundiukov, S. G. ; Nazarenko, N. B., Application of smoothing splines in processing the amplitude-time characteristics of radio meteors, 1988.
- V. A. Baturin, W. Däppen, A. V. Oreshina, S. V. Ayukov and A. B. Gorshkov, Interpolation of equation-of-state data, A\&A, Volume 626, June 2019.

Applications of splines to Astronomy and Astrophysics

- Akerlof, C. et al., Application of Cubic Splines to the Spectral Analysis of Unequally Spaced Data, 1994.
- Kundiukov, S. G. ; Nazarenko, N. B., Application of smoothing splines in processing the amplitude-time characteristics of radio meteors, 1988.
- V. A. Baturin, W. Däppen, A. V. Oreshina, S. V. Ayukov and A. B. Gorshkov, Interpolation of equation-of-state data, A\&A, Volume 626, June 2019.
- Collin A. Politsch, Jessi Cisewski-Kehe, Rupert A. C. Croft, and Larry Wasserman, Trend Filtering - I. A Modern Statistical Tool for Time-Domain Astronomy and Astronomical Spectroscopy, 2020

A special non-parametric model - Cubic splines $S(x)$ - a reminder

- $S(x)$ is a piecewise cubic polynomial in every interval $\left(x_{i}, x_{i+1}\right)$, where $a=x_{1}$ and $b=x_{n}$, and the knots x_{j} satisfy

$$
a=x_{1}<x_{2}<\cdots<x_{n}=b
$$

A special non-parametric model - Cubic splines $S(x)$ - a reminder

- $S(x)$ is a piecewise cubic polynomial in every interval $\left(x_{i}, x_{i+1}\right)$, where $a=x_{1}$ and $b=x_{n}$, and the knots x_{j} satisfy

$$
a=x_{1}<x_{2}<\cdots<x_{n}=b
$$

- $S \in C^{2}$ on the whole interval $[a, b]$

A special non-parametric model - Cubic splines $S(x)$ - a reminder

- $S(x)$ is a piecewise cubic polynomial in every interval $\left(x_{i}, x_{i+1}\right)$, where $a=x_{1}$ and $b=x_{n}$, and the knots x_{j} satisfy

$$
a=x_{1}<x_{2}<\cdots<x_{n}=b
$$

- $S \in C^{2}$ on the whole interval $[a, b]$
- some boundary conditions at a and b are added; e.g. Natural BC - in this case the splines are called Natural.

A special non-parametric model - Cubic splines $S(x)$ - a reminder

- $S(x)$ is a piecewise cubic polynomial in every interval $\left(x_{i}, x_{i+1}\right)$, where $a=x_{1}$ and $b=x_{n}$, and the knots x_{j} satisfy

$$
a=x_{1}<x_{2}<\cdots<x_{n}=b
$$

- $S \in C^{2}$ on the whole interval $[a, b]$
- some boundary conditions at a and b are added; e.g. Natural BC - in this case the splines are called Natural.
- THEOREM. For every set of interpolation data $\left\{f_{i}\right\}_{i=1}^{n}$ defined at $\left\{x_{i}\right\}_{i=1}^{n}$ there exists a unique (Natural) spline $S(x)$ with breaks at $\left\{x_{i}\right\}$ s.t.

$$
S\left(x_{i}\right)=f_{i} \quad \text { for } i=1,2, \ldots, n
$$

It is called interpolation spline to the data $\left\{f_{i}\right\}$.

A special non-parametric model - Cubic splines $S(x)$ - a reminder

- $S(x)$ is a piecewise cubic polynomial in every interval $\left(x_{i}, x_{i+1}\right)$, where $a=x_{1}$ and $b=x_{n}$, and the knots x_{j} satisfy

$$
a=x_{1}<x_{2}<\cdots<x_{n}=b
$$

- $S \in C^{2}$ on the whole interval $[a, b]$
- some boundary conditions at a and b are added; e.g. Natural BC - in this case the splines are called Natural.
- THEOREM. For every set of interpolation data $\left\{f_{i}\right\}_{i=1}^{n}$ defined at $\left\{x_{i}\right\}_{i=1}^{n}$ there exists a unique (Natural) spline $S(x)$ with breaks at $\left\{x_{i}\right\}$ s.t.

$$
S\left(x_{i}\right)=f_{i} \quad \text { for } i=1,2, \ldots, n .
$$

It is called interpolation spline to the data $\left\{f_{i}\right\}$.

- References: Sommerfeld (1903), de Boor (1978, 2001), Stoer-Bulirsch (1998), Green-Silverman (1994).

Why are polynomial splines good? An example - the sin

 function

Example - the circle

Fast algorithms for computation of interpolation cubic splines

- Fast algorithms exist for large amount of data (cf. Wahba 1990, Green-Silverman 1994)

The Smoothing cubic spline - Finding trends

- Assume data values $\mathbf{Y}=\left\{Y_{j}\right\}$ measured at $x_{j} \in[a, b]$, for $j=1, \ldots, N$

The Smoothing cubic spline - Finding trends

- Assume data values $\mathbf{Y}=\left\{Y_{j}\right\}$ measured at $x_{j} \in[a, b]$, for $j=1, \ldots, N$
- We consider the penalized functional

$$
S(g)=\sum_{j=1}^{N}\left(g\left(x_{j}\right)-Y_{j}\right)^{2}+\lambda \int_{a}^{b}\left|g^{\prime \prime}(t)\right|^{2} d t
$$

to avoid " wiggling" typical also for polynomials!!!

The Smoothing cubic spline - Finding trends

- Assume data values $\mathbf{Y}=\left\{Y_{j}\right\}$ measured at $x_{j} \in[a, b]$, for $j=1, \ldots, N$
- We consider the penalized functional

$$
S(g)=\sum_{j=1}^{N}\left(g\left(x_{j}\right)-Y_{j}\right)^{2}+\lambda \int_{a}^{b}\left|g^{\prime \prime}(t)\right|^{2} d t
$$

to avoid " wiggling" typical also for polynomials!!!

- THEOREM. The solution to problem

$$
\min _{g} S(g) \quad \text { where } g \in C^{2}(a, b)
$$

is a cubic spline, with knots $\left\{x_{j}\right\}$ and interpolation data

$$
\mathbf{g}=(I+\lambda K)^{-1} \mathbf{Y}
$$

where $K=Q R^{-1} Q^{\top}$.

Examples of smoothing splines with different lambda; here lambda $=0.95$

lambda is 0.5

Smoothed Cubic Spline with $\mathrm{P}=0.5$

lambda is 0.25 - more wiggling

Smoothed Cubic Spline with $\mathrm{P}=0.75$

lambda is 0.02 - very wiggling

Smooth Cubic Spline with $\mathrm{P}=0.98$

The fast (O(n) time) Reinsch algorithm (1971)

FACT: There exists a fast algorithm of Reinsch for the computation of the smoothing splines. Reference: Stoer-Bulirsch, Numerical Analysis, Springer, 2010.

Cross Validation for finding parameter lambda

- Let $\lambda>0$ be fixed.

Cross Validation for finding parameter lambda

- Let $\lambda>0$ be fixed.
- Let $\widehat{g}^{(-i)}(t ; \lambda)$ be a solution to the minimization problem

$$
\min _{g} \sum_{j \neq i}\left(Y_{j}-g\left(t_{j}\right)\right)^{2}+\lambda \int\left|g^{\prime \prime}(t)\right|^{2} d t
$$

Cross Validation for finding parameter lambda

- Let $\lambda>0$ be fixed.
- Let $\widehat{g}^{(-i)}(t ; \lambda)$ be a solution to the minimization problem

$$
\min _{g} \sum_{j \neq i}\left(Y_{j}-g\left(t_{j}\right)\right)^{2}+\lambda \int\left|g^{\prime \prime}(t)\right|^{2} d t
$$

- The cross-validation (leave-one-out) score function is

$$
C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{g}^{(-i)}\left(t_{i} ; \lambda\right)\right)^{2}
$$

Cross Validation for finding parameter lambda

- Let $\lambda>0$ be fixed.
- Let $\widehat{g}^{(-i)}(t ; \lambda)$ be a solution to the minimization problem

$$
\min _{g} \sum_{j \neq i}\left(Y_{j}-g\left(t_{j}\right)\right)^{2}+\lambda \int\left|g^{\prime \prime}(t)\right|^{2} d t
$$

- The cross-validation (leave-one-out) score function is

$$
C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{g}^{(-i)}\left(t_{i} ; \lambda\right)\right)^{2}
$$

- We minimize $C V(\lambda)$ to find λ.

The representation of Cross-Validation and GCV

- THEOREM: We have

$$
C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{Y_{i}-\widehat{g}\left(t_{i} ; \lambda\right)}{1-A_{i i}(\lambda)}\right)^{2}
$$

The representation of Cross-Validation and GCV

- THEOREM: We have

$$
C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{Y_{i}-\widehat{g}\left(t_{i} ; \lambda\right)}{1-A_{i i}(\lambda)}\right)^{2}
$$

- here the matrix

$$
A(\lambda)=\left(I+\lambda Q R^{-1} Q^{T}\right)^{-1}
$$

and its diagonal elements $A_{i j}$ may be computed in a FAST way, for details see G. Wahba (1990) and Green-Silverman (1994).

The representation of Cross-Validation and GCV

- THEOREM: We have

$$
C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{Y_{i}-\widehat{g}\left(t_{i} ; \lambda\right)}{1-A_{i i}(\lambda)}\right)^{2}
$$

- here the matrix

$$
A(\lambda)=\left(I+\lambda Q R^{-1} Q^{T}\right)^{-1}
$$

and its diagonal elements $A_{i i}$ may be computed in a FAST way, for details see G. Wahba (1990) and Green-Silverman (1994).

- Similar formula for Generalized Cross Validation - see the same references

Spline model - nodes of spline differ from data points

- This is a more complicated stuff - there may be gaps of the data

Spline model - nodes of spline differ from data points

- This is a more complicated stuff - there may be gaps of the data
- von Golitscheck - L. Schumaker

Multidimensional case

- Extremely large area of applications - Earth Observations (EO), Meteorology, Medicine, Finance (Volatility Surface), etc.

Multidimensional case

- Extremely large area of applications - Earth Observations (EO), Meteorology, Medicine, Finance (Volatility Surface), etc.
- What about Smoothing methods? error estimates, Conf. intervals, etc. ?

Multidimensional case

- Extremely large area of applications - Earth Observations (EO), Meteorology, Medicine, Finance (Volatility Surface), etc.
- What about Smoothing methods? error estimates, Conf. intervals, etc. ?
- Thin plate splines (TPS) in Wahba (1990) ;

Multidimensional case

- Extremely large area of applications - Earth Observations (EO), Meteorology, Medicine, Finance (Volatility Surface), etc.
- What about Smoothing methods? error estimates, Conf. intervals, etc. ?
- Thin plate splines (TPS) in Wahba (1990) ;
- Also, in Green-Silverman (1994): with Thin plate splines "some, but not all, of the attractive features of spline smoothing in one dimension carry over."

Multidimensional case

- Extremely large area of applications - Earth Observations (EO), Meteorology, Medicine, Finance (Volatility Surface), etc.
- What about Smoothing methods? error estimates, Conf. intervals, etc. ?
- Thin plate splines (TPS) in Wahba (1990) ;
- Also, in Green-Silverman (1994): with Thin plate splines "some, but not all, of the attractive features of spline smoothing in one dimension carry over."
- In Ramsay-Silverman (2005), chapter 22.2.3 Multidimensional arguments:
"Although we have touched multivariate functions of a single argument t, coping with more than one dimension in the domain of our functions has been mainly beyond our scope."

Multidimensional case

- Extremely large area of applications - Earth Observations (EO), Meteorology, Medicine, Finance (Volatility Surface), etc.
- What about Smoothing methods? error estimates, Conf. intervals, etc. ?
- Thin plate splines (TPS) in Wahba (1990) ;
- Also, in Green-Silverman (1994): with Thin plate splines "some, but not all, of the attractive features of spline smoothing in one dimension carry over."
- In Ramsay-Silverman (2005), chapter 22.2.3 Multidimensional arguments:
"Although we have touched multivariate functions of a single argument t, coping with more than one dimension in the domain of our functions has been mainly beyond our scope."
- One may use also RBFs, Kriging, Minimum Curvature, Shepard's method, etc. And our approach - POLYSPLINES.

Smoothed data - an example

Example of Multidimensional Scattered data set

- Importance for life problems even in dimension 2 - data of Earth Observations,

The generalized L-splines - the main bricks of the Polysplines

- Instead of 1D polynomials we use piecewise exponential functions called L-splines. A special case: fix ξ, then the L-spline is defined as a piecewise solution in every interval $\left[x_{j}, x_{j+1}\right]$ of the equation:

$$
L_{\xi} f(t)=0 \quad \text { with } L_{\xi}=\left(\frac{\partial^{2}}{\partial t^{2}}-\xi^{2}\right)^{2}
$$

which is C^{2} at the knots x_{j}; the basis of solutions are $e^{t \xi}, t e^{t \xi}, e^{-t \xi_{\zeta}}, t e^{-t \xi}$, while for the classical case are $1, t, t^{2}, t^{3}$.

The generalized L-splines - the main bricks of the Polysplines

- Instead of 1D polynomials we use piecewise exponential functions called L-splines. A special case: fix ξ, then the L-spline is defined as a piecewise solution in every interval $\left[x_{j}, x_{j+1}\right]$ of the equation:

$$
L_{\xi} f(t)=0 \quad \text { with } L_{\xi}=\left(\frac{\partial^{2}}{\partial t^{2}}-\xi^{2}\right)^{2}
$$

which is C^{2} at the knots x_{j}; the basis of solutions are $e^{t \tau}, t e^{t \xi}, e^{-t \xi}, t e^{-t \xi}$, while for the classical case are $1, t, t^{2}, t^{3}$.

- A much bigger generalization: Consider a polynomial L of degree 4 and the solutions of the related differential operator

$$
L\left(\frac{\partial}{\partial t}\right) f(t)=0
$$

The generalized L-splines - the main bricks of the Polysplines

- Instead of 1D polynomials we use piecewise exponential functions called L-splines. A special case: fix ξ, then the L-spline is defined as a piecewise solution in every interval $\left[x_{j}, x_{j+1}\right]$ of the equation:

$$
L_{\xi} f(t)=0 \quad \text { with } L_{\xi}=\left(\frac{\partial^{2}}{\partial t^{2}}-\xi^{2}\right)^{2}
$$

which is C^{2} at the knots x_{j}; the basis of solutions are $e^{t \tau}, t e^{t \xi}, e^{-t \xi^{\xi}}, t e^{-t \xi}$, while for the classical case are $1, t, t^{2}, t^{3}$.

- A much bigger generalization: Consider a polynomial L of degree 4 and the solutions of the related differential operator

$$
L\left(\frac{\partial}{\partial t}\right) f(t)=0
$$

- In the case of real coefficients of the polynomial L with four different roots a_{j} the basis of all solutions is given by the exponential functions $e^{a_{j} t}$.

Examples of L-splines

- Interpolation and smoothing L-splines of the special form depending on ξ were considered exhaustively, with fast algorithms in a paper "On a class of L-splines of order 4: fast algorithms for interpolation and smoothing", BIT Numerical Mathematics, 2020. They have as basis the exponential functions $e^{\xi t}, t e^{\xi t}, e^{-\xi t}, t e^{-\xi t}$.

Examples of L-splines

- Interpolation and smoothing L-splines of the special form depending on ξ were considered exhaustively, with fast algorithms in a paper "On a class of L-splines of order 4: fast algorithms for interpolation and smoothing", BIT Numerical Mathematics, 2020. They have as basis the exponential functions $e^{\xi t}, t e^{\xi t}, e^{-\xi t}, t e^{-\xi t}$.
- These 1D L-splines are important for the multidimensional theory of polysplines.

Examples of L-splines

- Interpolation and smoothing L-splines of the special form depending on ξ were considered exhaustively, with fast algorithms in a paper "On a class of L-splines of order 4: fast algorithms for interpolation and smoothing", BIT Numerical Mathematics, 2020. They have as basis the exponential functions $e^{\xi t}, t e^{\xi t}, e^{-\xi t}, t e^{-\xi t}$.
- These 1D L-splines are important for the multidimensional theory of polysplines.
- The case of more general L-splines of order 4 is considered in a more recent paper "Fast algorithms for interpolation with L-splines for differential operators L of order 4 with constant coefficients" , in ARXIV, submitted in J. Comp. and Applied Maths.

Further motivating examples to study smoothing L-splines (and exponential splines)

- GDP for Sweden with seasonal variation (in Ramsay-Silverman, 2005) - a cyclic effect superimposed on a linear development

Further motivating examples to study smoothing L-splines (and exponential splines)

- GDP for Sweden with seasonal variation (in Ramsay-Silverman, 2005) - a cyclic effect superimposed on a linear development
- the dashed line is Cubic smoothing (with GCV for λ), and the solid line is a smoothing $L-$ spline with $L=\left(-\gamma \frac{d}{d t}+\frac{d^{2}}{d t^{2}}\right)\left(\omega^{2}+\frac{d^{2}}{d t^{2}}\right)$.

Examples of smoothing L-splines - S\&P 500 data

- Daily S\&P500 prices for the period 24 October, 2017 - 24 October, 2018, total 253 days.

Smoothing results for the operator L_xi

- for $N=10$ knots; $\lambda=3, \xi=0.01$ (dash) and $\xi=0,13$:

Cont'd

- for $N=10$ knots; $\lambda=5,30,80,150$, and $\xi=0.13$.

Cont'd

- for $N=30$ knots; $\lambda=500$, and $\xi=0.01$ and $\xi=0.13$:

The new L-splines on the S\&P500 data

The new L-splines - some subtleties

- The splines in the Figure above are two different L-splines although the same differential operators.

The new L-splines - some subtleties

- The splines in the Figure above are two different L-splines although the same differential operators.
- The first polynomial L has the 4 different zeros $(-0.01 ; 0.01 ; 0.20 ;-0.20)$ and is "natural spline"

The new L-splines - some subtleties

- The splines in the Figure above are two different L-splines although the same differential operators.
- The first polynomial L has the 4 different zeros $(-0.01 ; 0.01 ; 0.20 ;-0.20)$ and is "natural spline"
- The second has the same set of zeros $(-0.01 ; 0.20 ; 0.01 ;-0.20)$ but is a different " natural spline"

The new L-splines - some subtleties

- The splines in the Figure above are two different L-splines although the same differential operators.
- The first polynomial L has the 4 different zeros $(-0.01 ; 0.01 ; 0.20 ;-0.20)$ and is "natural spline"
- The second has the same set of zeros $(-0.01 ; 0.20 ; 0.01 ;-0.20)$ but is a different " natural spline"
- Polsyplines are just one step forth

Polyspline interpolating 2D Titanium data at 70 points

References

- G. Wahba, Spline Models for Observational Data, SIAM, 1990.

References

- G. Wahba, Spline Models for Observational Data, SIAM, 1990.
- P. Green, B. Silverman, Nonparametric regression and generalized linear models, Chapman and Hall, 1994.

References

- G. Wahba, Spline Models for Observational Data, SIAM, 1990.
- P. Green, B. Silverman, Nonparametric regression and generalized linear models, Chapman and Hall, 1994.
- Ramsay, Silverman, 2005, Functional Data Analysis

References

- G. Wahba, Spline Models for Observational Data, SIAM, 1990.
- P. Green, B. Silverman, Nonparametric regression and generalized linear models, Chapman and Hall, 1994.
- Ramsay, Silverman, 2005, Functional Data Analysis
- Gu, Ch. , Smoothing Spline ANOVA Models, Springer, 2013.

References

- G. Wahba, Spline Models for Observational Data, SIAM, 1990.
- P. Green, B. Silverman, Nonparametric regression and generalized linear models, Chapman and Hall, 1994.
- Ramsay, Silverman, 2005, Functional Data Analysis
- Gu, Ch. , Smoothing Spline ANOVA Models, Springer, 2013.
- Hastie, Tibshirani, Friedman, The elements of statistical learning: Data Mining, Inference, and Prediction, 2009

The end

.THANK YOU!

